Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethyl 9-benzyl-3-cyano-9*H*-pyrrolo-[1,2-*a*]benzimidazole-1,2-dicarboxylate

Wei-Jin Gu, Yu-Liang Jiang and Bing-Xiang Wang*

Department of Applied Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China

Correspondence e-mail: wang.bingxiang@yahoo.com

Received 4 November 2009; accepted 17 November 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.125; data-to-parameter ratio = 13.7.

The title compound, $C_{22}H_{17}N_3O_4$, was prepared through 1,3dipolar cycloaddition: the dihedral angle between the benzimidazole and benzene rings is 80.93 (6)°. The crystal structure is stabilized by weak π - π interactions between the planar pyrrolobenzimidazole rings (r.m.s. deviation = 0.0293 Å) of neighbouring molecules, forming chains along the *c* axis. The perpendicular distance is 3.47 (2) Å and the centroid–centroid distances are in the range of 3.590 (3)– 3.944 (3) Å.

Related literature

For the use of 1,3-dipolar cycloaddition reactions of azomethine ylides in the construction of five-membered nitrogen heteroaromatic ring systems, see: Berry *et al.* (2007). For the applications of nitrogen heteroaromatic ring systems, see: Ansari & Lal (2009); Shen *et al.* (2006, 2008); Zhang *et al.* (2009). For the synthesis, see: Wang *et al.* (2000).

Experimental

Crystal data

mn

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.97, T_{max} = 0.98$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.125$ S = 1.033615 reflections 13898 measured reflections 3615 independent reflections 2699 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.057$

264 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.19 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the Natural Science Foundation of Jiangsu Province of China (grant No. BK2008435) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant No. 07KJD150101) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2016).

References

- Ansari, K. F. & Lal, C. (2009). *Eur. J. Med. Chem.* **44**, 2294–2299. Berry, C. R., Zificsak, C. A., Gibbs, A. C. & Hlasta, D. J. (2007). *Org. Lett.* **9**,
- 4099–4102.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651–653.
- Shen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916–918.
- Wang, B.-X., Hu, J.-X., Zhang, X.-C., Hu, Y.-F. & Hu, H.-W. (2000). J. Heterocycl. Chem. 37, 1533–1537.
- Zhang, D.-T., Wang, Z.-H., Xu, W.-R., Sun, F.-G., Tang, L.-D. & Wang, J.-W. (2009). Eur. J. Med. Chem. 44, 2202–2210.

supplementary materials

Acta Cryst. (2009). E65, o3155 [doi:10.1107/S1600536809048867]

Dimethyl 9-benzyl-3-cyano-9H-pyrrolo[1,2-a]benzimidazole-1,2-dicarboxylate

W.-J. Gu, Y.-L. Jiang and B.-X. Wang

Comment

1,3-Dipolar cycloadditions of azomethine ylides are one of the most powerful methods for the construction of five membered nitrogen heteroaromatic ring systems, both inter and intramolecularly (Berry *et al.*, 2007). Nitrogen heteroaromatic ring systems, such as benzimidazoles and indolizines, can be utilized as not only a wide variety of biologically active and medicinally significant compounds (Zhang *et al.*, 2009; Ansari *et al.*, 2009), but also organic fluorescence probes (Shen *et al.*, 2006; Shen *et al.*, 2008). In our continuing studies in organic fluorescence probes, we synthesized the title compound (I), dimethyl 4-benzyl-1-cyano-4*H*-pyrrolo[1, 2 - a] benzimidazole-2,3-dicarboxylate, $C_{22}H_{17}N_3O_4$.

The crystal structure of (I) reveals that all the bond lengths and angles have normal values. There is one title compound molecule per asymmetric unit. Each molecule contains one pyrrolo-benzimidazole ring A and one benzyl ring B (Fig 1). The rings A and B are almost perpendicular, making a dihedral angle of 80.93 (6)°.

In the crystal structure there are weak π - π interactions between the planar pyrrolo-benzimidazole rings (r.m.s. deviation of 0.0293 Å) of neighbouring molecules. The perpendicular distance is 3.47 (2) Å and the distances Cg1- $Cg2^{i}$ and Cg2- $Cg2^{iii}$ are 3.590 (3) and 3.944 (3) Å, respectively. (Cg1 is the center of ring C7/C8/C9/C10/N1 and Cg2 is the center of ring C1/C2/C3/C4/C5/C6; i: 2 - x, 2 - y, 2 - z; iii: 2 - x, 2 - y, 1 - z). Through the π - π interactions one-dimensional chains are formed along *c* axis.

Experimental

Dimethyl 4-benzyl-1-cyano-4*H*-pyrrolo[1,2-a] benzimidazole-2,3-dicarboxylate was prepared through 1,3-dipolar cycloaddition according to a procedure described in the literature (Wang *et al.*, 2000). Colorless crystals were obtained by recrystallization from a dichloromethane solution at room temperature.

Refinement

The H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figures

Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 50% probability level.

Fig. 2. A view of the packing down b axis.

 $F_{000} = 808$

 $\theta = 2.6 - 25.2^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, colorless

 $0.26 \times 0.22 \times 0.20 \text{ mm}$

T = 291 K

 $D_{\rm x} = 1.376 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1791 reflections

Dimethyl 9-benzyl-3-cyano-9H-pyrrolo[1,2-a]benzimidazole-1,2-dicarboxylate

Crystal data C₂₂H₁₇N₃O₄

 $M_r = 387.39$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.8681 (15) Åb = 24.766 (2) Åc = 7.6551 (11) Å $\beta = 91.973 (3)^{\circ}$ $V = 1869.7 (4) \text{ Å}^3$ Z = 4

Data collection

Data collection	
Bruker SMART APEX CCD diffractometer	3615 independent reflections
Radiation source: sealed tube	2699 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.057$
<i>T</i> = 291 K	$\theta_{\text{max}} = 26.0^{\circ}$
phi and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$

(SADABS; Bruker, 2000)	
$T_{\min} = 0.97, \ T_{\max} = 0.98$	$k = -26 \rightarrow 30$
13898 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.125$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 0.66P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
3615 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
264 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Experimental. 1*H*-NMR (CDCl₃, 400 MHz) δ: 3.81 (s, 3H, -COOCH₃), 4.00 (s, 3H, -COOCH₃), 5.92 (s, 2H, -CH₂Ph), 7.20–7.41 (m, 8H, ArH), 8.07 (d, 1H, J = 7.9 Hz, ArH)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

-0.0001(0.0049) x + 11.1526(0.0083)y + 6.8309(0.0017) z = 16.2473 (0.0105)

* 0.0370 (0.0017) C1 * 0.0187 (0.0017) C2 * -0.0329 (0.0017) C3 * -0.0312 (0.0019) C4 * -0.0132 (0.0017) C5 * 0.0115 (0.0017) C6 * 0.0056 (0.0017) C7 * -0.0396 (0.0016) C8 * -0.0420 (0.0016) C9 * 0.0128 (0.0016) C10 * 0.0392 (0.0015) N1 * 0.0341 (0.0015) N2

Rms deviation of fitted atoms = 0.0293

7.9901(0.0063)x + 10.7417(0.0233)y - 3.2379(0.0071)z = 12.8495(0.0190)

Angle to previous plane (with approximate e.s.d.) = 80.93 (0.06)

* 0.0109 (0.0016) C13 * -0.0131 (0.0017) C14 * 0.0058 (0.0018) C15 * 0.0036 (0.0019) C16 * -0.0055 (0.0019) C17 * -0.0016 (0.0017) C18

Rms deviation of fitted atoms = 0.0078

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	1.0019 (2)	1.00932 (8)	0.7360 (3)	0.0272 (4)
C2	1.0476 (2)	1.05587 (9)	0.6574 (3)	0.0342 (5)
H2	1.1394	1.0634	0.6481	0.041*
C3	0.9480 (3)	1.09034 (10)	0.5935 (3)	0.0403 (6)
Н3	0.9727	1.1219	0.5367	0.048*
C4	0.8095 (2)	1.07867 (9)	0.6128 (3)	0.0387 (6)
H4	0.7450	1.1033	0.5710	0.046*
C5	0.7662 (2)	1.03148 (10)	0.6925 (3)	0.0359 (5)
Н5	0.6746	1.0239	0.7042	0.043*
C6	0.8651 (2)	0.99690 (9)	0.7526 (3)	0.0283 (5)
C7	0.9829 (2)	0.92732 (8)	0.8653 (3)	0.0252 (4)
C8	1.0572 (2)	0.88306 (9)	0.9310 (3)	0.0283 (5)
С9	1.1957 (2)	0.89723 (9)	0.9075 (3)	0.0301 (5)
C10	1.2040 (2)	0.94775 (9)	0.8330 (3)	0.0288 (5)
C11	1.3184 (2)	0.97791 (9)	0.7903 (3)	0.0333 (5)
C12	0.7257 (2)	0.91558 (10)	0.8516 (3)	0.0326 (5)
H12A	0.6509	0.9402	0.8692	0.039*
H12B	0.7325	0.8913	0.9509	0.039*
C13	0.69949 (19)	0.88336 (9)	0.6848 (3)	0.0292 (5)
C14	0.6168 (2)	0.90361 (10)	0.5555 (3)	0.0394 (6)
H14	0.5747	0.9368	0.5706	0.047*
C15	0.5946 (3)	0.87514 (11)	0.4004 (3)	0.0463 (7)
H15	0.5403	0.8898	0.3108	0.056*
C16	0.6539 (3)	0.82453 (12)	0.3795 (3)	0.0493 (7)
H16	0.6382	0.8055	0.2761	0.059*
C17	0.7340 (3)	0.80288 (12)	0.5082 (3)	0.0466 (6)
H17	0.7729	0.7690	0.4944	0.056*
C18	0.7576 (2)	0.83240 (10)	0.6629 (3)	0.0411 (6)
H18	0.8125	0.8179	0.7521	0.049*
C19	1.0032 (2)	0.83746 (9)	1.0316 (3)	0.0336 (5)
C20	1.0629 (3)	0.76423 (12)	1.2133 (4)	0.0577 (8)
H20A	1.0048	0.7778	1.3013	0.087*
H20B	1.1420	0.7482	1.2682	0.087*
H20C	1.0150	0.7376	1.1441	0.087*
C21	1.3202 (2)	0.86405 (10)	0.9391 (3)	0.0376 (5)
C22	1.4343 (3)	0.78357 (12)	0.8747 (4)	0.0528 (7)
H22A	1.5076	0.7961	0.8061	0.079*
H22B	1.4102	0.7475	0.8400	0.079*
H22C	1.4619	0.7838	0.9962	0.079*
N1	1.07206 (16)	0.96508 (7)	0.8086 (2)	0.0243 (4)
N2	0.85368 (17)	0.94658 (7)	0.8381 (2)	0.0278 (4)
N3	1.41453 (19)	1.00265 (9)	0.7614 (3)	0.0411 (5)
01	1.10343 (16)	0.80841 (7)	1.1015 (2)	0.0403 (4)
02	0.88636 (17)	0.82715 (7)	1.0552 (2)	0.0449 (5)
03	1.31742 (17)	0.81903 (7)	0.8471 (2)	0.0451 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supplementary materials

O4	1.4114 (2)	0.87751 (9)	1	.0281 (3)	0.0648 (6)	
Atomic displace	ment parameters ((A^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0323 (11)	0.0244 (11)	0.0247 (10) -0.0022 (9)	-0.0037 (8)	-0.0041 (8)
C2	0.0466 (13)	0.0273 (12)	0.0285 (11) -0.0057 (10)) 0.0002 (10)	-0.0019 (9)
C3	0.0513 (15)	0.0310 (13)	0.0385 (13	0.0007 (11)	0.0013 (11)	-0.0045 (10)
C4	0.0433 (14)	0.0249 (12)	0.0473 (14) 0.0040 (10)	-0.0059 (11)	-0.0014 (10)
C5	0.0323 (12)	0.0352 (13)	0.0399 (13	0.0041 (10)	-0.0055 (10)	-0.0037 (10)
C6	0.0274 (10)	0.0230 (11)	0.0343 (11) 0.0022 (9)	-0.0014 (9)	-0.0041 (9)
C7	0.0232 (10)	0.0269 (11)	0.0254 (10) -0.0068 (8)	0.0006 (8)	-0.0034 (8)
C8	0.0264 (10)	0.0329 (12)	0.0257 (10) -0.0025 (9)	0.0022 (8)	-0.0034 (9)
C9	0.0301 (11)	0.0342 (13)	0.0255 (10) -0.0010 (9)	-0.0045 (9)	-0.0033 (9)
C10	0.0238 (10)	0.0337 (13)	0.0284 (10	0.0024 (9)	-0.0040 (8)	-0.0013 (9)
C11	0.0260 (11)	0.0289 (12)	0.0448 (13	0.0028 (9)	-0.0003 (10)	-0.0014 (10)
C12	0.0189 (10)	0.0365 (13)	0.0428 (13	-0.0071 (9)	0.0074 (9)	-0.0026 (10)
C13	0.0175 (9)	0.0341 (12)	0.0361 (12	-0.0056 (9)	0.0054 (8)	0.0021 (9)
C14	0.0381 (13)	0.0348 (13)	0.0444 (13	-0.0044 (10)) -0.0116 (10)	-0.0010 (11)
C15	0.0522 (15)	0.0540 (17)	0.0316 (13	-0.0098 (13	3) -0.0143 (11)	0.0006 (11)
C16	0.0535 (16)	0.0536 (17)	0.0406 (14	-0.0132 (13	3) -0.0033 (12)	-0.0178 (12)
C17	0.0485 (15)	0.0460 (15)	0.0457 (15	·) -0.0021 (12	2) 0.0038 (12)	-0.0133 (12)
C18	0.0398 (13)	0.0361 (14)	0.0466 (14	0.0050 (11)	-0.0073 (11)	-0.0077 (11)
C19	0.0377 (13)	0.0303 (13)	0.0321 (12	2) 0.0005 (10)	-0.0074 (10)	-0.0015 (9)
C20	0.076 (2)	0.0544 (18)	0.0425 (15	b) 0.0009 (15)	0.0044 (14)	0.0349 (13)
C21	0.0348 (12)	0.0373 (14)	0.0403 (13	0.0018 (10)	-0.0031 (10)	0.0009 (11)
C22	0.0480 (15)	0.0571 (18)	0.0535 (16	b) 0.0282 (13)	0.0064 (13)	-0.0133 (13)
N1	0.0211 (8)	0.0270 (9)	0.0249 (9)	-0.0030 (7)	0.0014 (7)	-0.0028 (7)
N2	0.0221 (8)	0.0295 (10)	0.0319 (9)	-0.0045 (7)	0.0000 (7)	-0.0004 (7)
N3	0.0303 (10)	0.0528 (14)	0.0404 (11) -0.0052 (10	0.0049 (8)	0.0129 (10)
O1	0.0418 (9)	0.0435 (10)	0.0356 (9)	0.0077 (8)	0.0030 (7)	0.0184 (7)
02	0.0395 (10)	0.0547 (11)	0.0399 (9)	-0.0098 (8)	-0.0049 (7)	0.0225 (8)
O3	0.0467 (10)	0.0461 (11)	0.0422 (9)	0.0157 (8)	-0.0041 (8)	-0.0152 (8)
O4	0.0576 (12)	0.0899 (16)	0.0452 (11) 0.0140 (11)	-0.0211 (10)	-0.0184 (11)

Geometric parameters (Å, °)

C1—C2	1.384 (3)	C12—H12B	0.9700
C1—C6	1.394 (3)	C13—C14	1.357 (3)
C1—N1	1.401 (3)	C13—C18	1.398 (3)
C2—C3	1.379 (3)	C14—C15	1.392 (3)
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.410 (4)	C15—C16	1.395 (4)
С3—Н3	0.9300	C15—H15	0.9300
C4—C5	1.392 (3)	C16—C17	1.352 (4)
C4—H4	0.9300	С16—Н16	0.9300
C5—C6	1.366 (3)	C17—C18	1.405 (3)
С5—Н5	0.9300	С17—Н17	0.9300
C6—N2	1.414 (3)	C18—H18	0.9300

supplementary materials

	1.265 (2)	G10 0 0	1 201 (2)
C/—NI	1.365 (3)	C19—O2	1.201 (3)
C7—N2	1.3/1 (3)	C19—01	1.321 (3)
С7—С8	1.402 (3)	C20—O1	1.454 (3)
C8—C9	1.429 (3)	С20—Н20А	0.9600
C8—C19	1.477 (3)	С20—Н20В	0.9600
C9—C10	1.378 (3)	С20—Н20С	0.9600
C9—C21	1.491 (3)	C21—O4	1.159 (3)
C10—N1	1.378 (3)	C21—O3	1.318 (3)
C10-C11	1.401 (3)	C22—O3	1.459 (3)
C11—N3	1.157 (3)	C22—H22A	0.9600
C12—N2	1.485 (3)	C22—H22B	0.9600
C12—C13	1.520 (3)	C22—H22C	0.9600
C12—H12A	0.9700		
C2—C1—C6	123.7 (2)	C13—C14—H14	119.7
C2-C1-N1	131.3 (2)	C15—C14—H14	119.7
C6—C1—N1	104.97 (17)	C14—C15—C16	119.9 (2)
C3—C2—C1	115.5 (2)	C14—C15—H15	120.0
C3—C2—H2	122.2	C16—C15—H15	120.0
C1—C2—H2	122.2	C17—C16—C15	120.7(2)
$C_{2}^{2} - C_{3}^{2} - C_{4}^{2}$	121.2 (2)	C17 - C16 - H16	1197
$C_2 = C_3 = H_3$	119.4	C15-C16-H16	119.7
$C_2 = C_3 = H_3$	119.4	$C_{16} - C_{17} - C_{18}$	119.7
$C_{4} = C_{3} = 113$	122 1 (2)	C16-C17-H17	120.5
$C_{5} = C_{4} = C_{5}$	112.1 (2)	C18 C17 H17	120.5
C_{2} C_{4} H_{4}	110.9	$C_{10} = C_{17} = C_{17}$	120.5
C3-C4-H4	116.9	$C_{13} = C_{18} = C_{17}$	121.0 (2)
C_{6}	116.5 (2)	C13-C18-H18	119.5
С6—С5—Н5	121.7		119.5
С4—С5—Н5	121.7	02-019-01	122.2 (2)
C5—C6—C1	120.9 (2)	02	127.4 (2)
C5—C6—N2	129.9 (2)	01	110.4 (2)
C1—C6—N2	109.22 (17)	O1—C20—H20A	109.5
N1—C7—N2	108.65 (18)	O1—C20—H20B	109.5
N1—C7—C8	108.36 (18)	H20A—C20—H20B	109.5
N2—C7—C8	142.99 (19)	O1—C20—H20C	109.5
C7—C8—C9	104.67 (19)	H20A-C20-H20C	109.5
C7—C8—C19	126.24 (19)	H20B-C20-H20C	109.5
C9—C8—C19	128.1 (2)	O4—C21—O3	124.0 (2)
C10—C9—C8	110.22 (19)	O4—C21—C9	123.7 (2)
C10-C9-C21	120.5 (2)	O3—C21—C9	112.17 (19)
C8—C9—C21	129.1 (2)	O3—C22—H22A	109.5
N1—C10—C9	105.65 (18)	O3—C22—H22B	109.5
N1-C10-C11	124.6 (2)	H22A—C22—H22B	109.5
C9—C10—C11	129.77 (19)	O3—C22—H22C	109.5
N3—C11—C10	177.5 (2)	H22A—C22—H22C	109.5
N2—C12—C13	109.47 (17)	H22B—C22—H22C	109.5
N2—C12—H12A	109.8	C7—N1—C10	111.09 (17)
C13—C12—H12A	109.8	C7—N1—C1	110.29 (17)
N2—C12—H12B	109.8	C10—N1—C1	138.55 (18)
C13—C12—H12B	109.8	C7-N2-C6	106.77 (16)
	• •		

H12A—C12—H12B	108.2	C7—N2—C12	126.79 (18)
C14—C13—C18	119.0 (2)	C6—N2—C12	124.71 (17)
C14—C13—C12	120.0 (2)	C19—O1—C20	115.5 (2)
C18—C13—C12	121.1 (2)	C21—O3—C22	115.44 (19)
C13—C14—C15	120.6 (2)		

Fig. 1

